MATH 2230 Complex Variables with Applications
(2014-2015, Term 1)
Suggested Solution to HW?2

1. (SEC.18,No.5)

Proof: When z = (z,0) is a nonzero point on the real axis,
x +10
x — 10

f(z) = ) =1

When z = (0,y) is a nonzero point on the imaginary axis,
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When z = (x,z) is a nonzero point on the line y = x,
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Thus, the limit of f(z) as z tends to 0 does not exist.
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2. (SEC.18,No.10)

Solution: (a) By theorem in Sec.17, we have
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(b) By theorem in Sec.17, we have
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(¢) By theorem in Sec.17, we have
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3. (SEC.18,No.11)

Proof: (a) Since
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. (SEC.20,No.8)
Proof: Refer to Page 56 on the textbook.

5. (SEC.20,No.9)
Proof: S
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Thus, f'(0) does not exist.

(SEC.24,No.2)
Remark: Refer to Sec.23 on the textbook.



